HANDY FORMULAS EVERY ENGINEER SHOULD KNOW

Update: 3/9/06

WATER

TONS = GPM x CHILLED WATER RANGE

24

24 = 200 BTU/MIN

(8.33# /GAL.) x (1.0 SPECIFIC HEAT) x (1.0 SPECIFIC GRAVITY)

EER = $\underline{\text{MBH NET}}$ = $\underline{\text{TONS x } 12}$

KW TOTAL K

COND. GPM = $TONS \times 30$

COND. WATER RANGE

PUMP BHP = $GPM \times TOTAL SYSTEM HEAD (FT. H₂O)$

3960 x PUMP EFFICIENCY

POWER = $LOAD \times HEAD$

EFFICIENCY

GPM WATER = TOTAL COOLING LOAD (MBH) x 2

WATER TEMPERATURE RISE

WATER PRESSURE DROP (FT) = $2.31 \times \triangle PSIG$

<u>AIR</u>

TOTAL COOLING LOAD (MBH) = 4.5

x CFM STANDARD AIR

x (ENTHALPY ENT. AIR -- ENTHALPY LVG. AIR) / 1000

SENSIBLE COOLING LOAD (MBH) = $1.08 \times CFM STANDARD AIR \times (EDB-LDB)$

1000

TOTAL COOLING LOAD: BTU/HR. = GPM x 500 x (EWT-LWT)

4.5 = 0.075 (WT. OF STD. AIR, #/FT³) x 60 (MIN./HR.)

1.08 = 0.075 (WT. OF STD. AIR, #/FT³) x 60 (MIN./HR.)

x 24 (Specific Heat of dry air)

 $500 = 8.33 \text{ (WT. OF H}_20 @ 60 \text{ degF}, \#/\text{GAL}) \times 60 \text{ (MIN./HR.)}$

x 1.0 (Specific heat of water)

TOTAL PRESSURE = VELOCITY pressure (Vp) + STATIC pressure (Sp)

CFM = face velocity (ft/min) / face area (sq. ft) = face area x $4005 \times \text{sqrt}(Vp/k)$

HANDY FORMULAS EVERY ENGINEER SHOULD KNOW

ELECTRICAL

PUMP KW =
$$FLOW (gpm) \times PD (ft)$$
 PUMP HP = $FLOW (gpm) \times HEAD (ft)$

5311 x Epump x Emotor 5311 x Epump x Emotor

FAN
$$KW = \frac{.7457 \times BHP}{Emotor}$$
 FAN $HP =$

Emotor FAN HP = $\frac{\text{CFM x SP}}{6350 \text{ x Efan}}$

1.73 = **√**3 FOR THREE PHASE SERVICE

FAN STATIC EFF =
$$CFM \times SP$$

6350 x BHP BTU = KW x 3415 1KW = 1.34 HP

1 HP = 2545 BTUH

BASIC FAN LAWS

$$\frac{\mathsf{CFM}_1}{\mathsf{CFM}_2} = \frac{\mathsf{RPM}_1}{\mathsf{RPM}_2}$$

$$\frac{SP_1}{SP_2} = \frac{(RPM_1)^2}{(RPM_2)^2} = \frac{(CFM_1)^2}{(CFM_2)^2}$$

$$\frac{BHP_{1}}{BHP_{2}} = \frac{(RPM_{1})^{3}}{(RPM_{2})^{3}} = \frac{(CFM_{1})^{3}}{(CFM_{2})^{3}}$$

DRIVE CALCULATIONS

MOTOR RPM x MOTOR PULLEY PD = BLOWER RPM x BLOWER PULLEY PD

10% TOO MUCH CFM: